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Abstract  

 
    This paper analyses the inter–firm R&D network formed in the pharmaceutical 
biotechnology industry during the 1990s from different perspectives: theoretical network 
formation, firm’s structural positions and its collaborations at the entire network level, and the 
determinants for firm’s centrality–based partnering capability. The results indicate that 
pharmaceutical biotechnology industry has experienced a significant evolutional change in size 
and structure during 1991–1998. By considering individual structural positions, the descriptive 
statistics show that in the 1990s, established pharmaceutical companies developed into 
dominant star players with multiple partnerships while holding central roles in the R&D 
network. In the network analysis that emphasized aggregate network level, the degree–based 
and betweenness–based network centralization were not high implying that the distribution of 
overall positional advantages in the pharmaceutical biotechnology industry is, to a large degree, 
not unequal and even though most firms in this sector are linked to the R&D network, some of 
them are more active than others. The current analysis also shows that firm’s efficiency, firm’s 
dependency on its complementary resources and firm’s experiences at managing partnerships 
are important determinants for firm’s centrality–based partnering capability, which has 
important managerial implications for understanding firm’s strategic partnering behaviour.  
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1   Introduction 

 

    High technology industries with their rapidly developing innovation and knowledge 

base serve as an important source for the national economy. Their development 

demands firms to possess knowledge and skills in multiple technological fields in order 

to meet market conditions. In such a dynamic and competitive industrial environment, 

no single firm has the ability to keep pace with the growing scientific and technological 

progresses without external partners (Cantner and Rake, 2011). Particularly in the 

high–tech sector of pharmaceutical biotechnology, as widely acknowledged in the 

literature, the creation of a tight inter–firm network of research and development 

(R&D) collaboration has become an unavoidable strategy for innovative companies (see 

Chiaroni et al., 2008; Roijakkers and Hagedoorn, 2006; Salman and Salves, 2005). As a 

result, the pharmaceutical biotechnology industry has witnessed a sharply increasing 

frequency of inter–firm partnerships between large established pharmaceutical firms 

and a range of biotechnology companies in recent decades (see Hagedoorn and 

Roijakkers, 2002; Powell et al., 2005; Rothaermel, 2000). Especially during the 1990s, 

the inter–firm partnerships between these two high technology sectors have successfully 

created a track for high technology companies to achieve progress in knowledge and 

innovation (Roijakkers, 2003). As more and more firms from the pharmaceutical 

biotechnology sector realized the importance of innovation, the cooperation between 

high–tech firms turned out to be dense and tight, and their communication network 

became “a small world” to the extent that vast numbers of firms with different 

national origins were all connected to each other, which consequently globalized the 

world market in the high technology sector. Using the information from Recombinant 

Capital database1 in 1995, we could draw the global connection of the pharmaceutical 

biotechnology industry with the network visualization software Pajek (Nooy et al., 

2005), in which each red orb indicates one company and the black lines with two 

arrows represents the cooperation between them (Figure 1). This R&D network 

between firms seems to be a prime illustration for the renowned “small world 

phenomenon” (Milgram, 1967), which refers to the “six degrees of separation” principle 

                                                 
1 Recombinant Capital is a San Francisco Bay Area–based consulting firm specializing in biotechnology 
alliances and reputed to have built some of the largest and most detailed biotech business intelligence 
databases in the world. Its clients include biotechnology and pharmaceutical companies, plus several 
universities active in the biotechnology area. 
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that the network distance between any two individuals in the world is, on average, six. 

Obviously, a cooperation network between firms is not distinct from a social network 

between people. Globalization makes the world narrow and small, and the distance is 

no longer an obstacle for the connections. Furthermore, integrating into such a research 

network enables high–tech firms to optimally share the resources that they possess. As 

a result, they would have opportunities to access the resources available in the whole 

world, and exchange technological and innovative information with greater facilities.  

 

 

 

Figure 1: “Small world” of the pharmaceutical biotechnology sector in 1995; source: 
Recombinant Capital. 
 

    However, cooperating firms do not share equal opportunities and advantages within 

the same network. Goyal and Joshi (2003), from a view of theoretical network 

formation, indicated that collaborations used by firms to generate strategically stable 

networks are often asymmetric, with some firms having many collaboration links and 

other firms being poorly linked. This asymmetry can be observed on the core–periphery 

structure of the network, in which central firms that are situated in favoured structural 

positions have more opportunities to perform better than the firms located on the 
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network periphery (Hojman and Szeidl, 2004). A firm’s capability to place itself 

centrally could be quantified by its centrality, which is one of the earliest concepts to 

describe an actor’s strategic position in a network. There have been a number of 

authors who investigated the topic relating to firm’s centrality on a wide range of 

aspects. Tsai (2001) suggested that a firm’s innovative capability is significantly 

increased by its centrality in the intra–organizational network, which provides the 

opportunities for knowledge transfer and information exchange. Walter et al. (2007) 

proposed that a firm’s centrality in the inter–firm network positively affects its ability 

to acquire knowledge from its collaboration partners. Thus, in order to obtain more 

chances for acquiring knowledge, a firm has to actively pursue a positional advantage 

by aligning itself with a central player of the inter–firm network. Santos (2003) applied 

longitudinal data in a sample of 225 biotech companies and found that the size of firms 

is positively correlated with their previous network centrality, and due to the 

advantages of knowledge spillovers, the development of a central position in the 

network positively influences firms’ future growth. Powell et al. (1996) empirically 

demonstrated that a central position in inter–firm learning networks for biotechnology 

start–ups is related to their rapid subsequent growth. By using pharmaceutical 

biotechnology industry data, Hagedoorn et al. (2006) pointed out that firms with larger 

centrality–based capability are more likely to engage in future partnering activities. 

While the above–mentioned aspects have been rather extensively treated in the 

literature, relatively scarce attention has been paid to the question of what essentially 

determines a firm’s centrality–based network capability. In the current paper, we will 

empirically test the possible determinative factors of a firm’s centrality–based 

partnering capability in the pharmaceutical biotechnology industry by using the 

econometrics approaches of two–stage least squares (2SLS) and the optimal generalized 

method of moments (GMM).  

The main purpose of this paper is to provide a descriptive and empirical analysis of 

inter–firm R&D networks in the pharmaceutical biotechnology industry. In this context, 

this paper exploits the insights gained from inter–firm cooperation of this high 

technology sector under different aspects: theoretical network formation, firm’s 

structural positions and its collaborations at the aggregate network level, and the 

determinants for firm’s centrality–based partnering capability in the R&D network. 

The remaining part of the paper is structured as follows. The second section provides 

the theory of network formation and its applications to firm’s cooperation, especially 



 4 

the cooperation between firms in the pharmaceutical biotechnology sector. It also 

describes the evolutional structural change in the pharmaceutical biotechnology 

network during the time period 1991–1998. Section 3 discusses conceptions and relevant 

descriptive statistics for the pharmaceutical biotechnology industry with regard to 

actor–level centrality and network–level centralization, and then identifies the most 

important players in the inter–firm R&D network of this high–tech sector during the 

period 1991–1998. Section 4 comprises an empirical analysis to identify the 

determinative factors of a firm’s centrality–based partnering capability which is 

followed by a discussion with special attention to the managerial implications of our 

findings. The final section presents the major conclusions drawn from this paper.  

 

 

 

2   The Economics of Networks 

 

Networks play an important role as intermediary between economics and social 

society. The growth of modern industries and economics would be diminished to a large 

degree without the communication and information in a social network. Earlier studies 

indicated that social networks are essential for economics activities. These studies cast 

some lights on the networks in the labour markets in the context of networks as means 

of obtaining jobs (see Myers and Shultz, 1951; Rees and Shultz, 1970). This interest 

was further developed by the studies of Boorman (1975) and Montgomery (1991), 

which were crucial early bridges between the sociology literature and the economics 

literature (Jackson, 2007). One of the important views expressed in these studies is the 

choice–based perspective that underlines economic network formation, which can be 

captured as: individuals form or maintain relationships in their mutual interests, and 

avoid or remove themselves from relationships that are not beneficial. In a R&D 

collaboration network, firms behave analogously to individuals in the way that they 

form a link when the cooperation is reciprocal and delete a link that cannot bring any 

benefits to them. The economics behind such a network of firms is that the cooperation 

provides firms a way to integrate their separate resources in order to achieve the 

optimal efficiencies that a single firm itself cannot reach (Gottinger and Umali, 2008). 

This feature is especially important for the high–tech industry, in which the formation 

of R&D networks is regarded as an adaptive response to the rapidly growing knowledge 
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within the sector. In the following, some theoretical issues in the network formation 

will be discussed and their applications to the cooperation between firms, particularly 

the firms in the high–tech sector of pharmaceutical biotechnology will be addressed.  

    One of the fundamental concepts underlining network formation is pairwise stability, 

which was defined by Jackson and Wolinsky (1996). According to these authors, a 

network is considered as pairwise stable if no pair of players could benefit from linking, 

while no single player could gain by severing one of his links. This concept of pairwise 

stability, which involves a mutual consent to form a relationship, shows the response of 

players to the cost and benefits that they expect from network relationships. Issues 

related to group formation have also been a central concern of network theory. In the 

literature, group formation is modelled in terms of a coalition structure, in which 

coalitional membership partitions the set of players into mutually exclusive groups. 

Initial work on coalition formation was carried out within traditional cooperative game 

theory, which describes a variety of productive enterprises where the cooperation 

among players is beneficial (Jackson, 2007). By adopting this setting into the 

experiments, Myerson (1977) pointed out that cooperation leads to higher utility than 

separate efforts and predicted how the value should be split among members of the 

society, which is now referred to as the Myerson Value. Following up on this work, 

there have been a number of studies on cooperative games, for instance, Aumann and 

Myerson (1988) proposed a game of link formation in a strategic context where players 

anticipate the effect that communication has on cooperative opportunities and 

ultimately on the value that they will obtain. Apart from the studies on cooperative 

group formations, there have also been developments of non–cooperative theory of 

coalition formation, such as the open membership game of Yi and Shin (1995), the 

coalition unanimity game of Bloch (1995 and 1996), and the equilibrium binding 

agreements of Ray and Vohra (1997).  

    Under the aspect of network efficiency, a fundamental theoretical model which 

presents the value of relationship should be brought to our attention. It was proposed 

by Jackson and Wolinsky (1996) under the name “connection model” and has been 

largely adopted and developed in later studies. In the setting of this model, a link 

indicates social relationships which offer benefits and also involve some costs. Players 

benefit from both, direct relationships and indirect relationships, but benefits decrease 

with the distance between any pair of players to the extent that a “friend of a friend” 

generates a lower benefit than a friend. The results from the model imply that if the 
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costs of a relationship are low enough, the efficient network is a complete network (i.e., 

where everyone directly links to everyone). However, if the costs are very high relative 

to the benefits, the empty network (i.e., without any links) will be the only efficient 

network, and for the intermediate level of costs, the star network with the feature of 

pairwise stability is the efficient network structure. This “connection model” also 

illustrates another fundamental point of theoretical network formation, namely that 

there could be a tension between stability and efficiency. Specifically, in this model, a 

link between two players can reduce distances for all players in a network, but the 

player who is directly involved in this link would only consider whether or not his 

payoff will increase, without thinking about whether this link will increase the payoffs 

of others. This situation renders the pairwise stable networks inefficient. Some authors 

use the “connection model” to also identify the relation between efficiency and stability 

in a network. For instance, Bala and Goyal (2000) analyzed the “connection model” 

under the assumption that players form links unilaterally. In their two–way flow 

setting, the conflict between stability and efficiency again exists, represented by the 

example of telephone calls: one player makes the phone call and incurs the cost of 

calling, but both players benefit from the information exchange during the telephone 

conversation. Another example relating to the tension between efficiency and stability 

is the “co–author model” (see Jackson and Wolinsky, 1996). The story accompanies the 

collaboration on a research project: when one researcher decides to join in a project 

with another researcher, he dilutes the time he spends on each of his current projects, 

which negatively affect his productivity on each of his projects. This decline in 

productivity influences the researcher but also affects each of his collaboration partners. 

However, he would only account for the negative effect on his own utility but ignore 

the effects on his collaboration partners. As a result, the inefficiency of a stable 

network becomes evident. To resolve the conflict between efficiency and stability, the 

players within a network could bargain over payments by themselves to attain the 

efficiency, or the government could take actions of reallocating value through transfers, 

such as taxes and subsidies (Goyal, 2007).  

    As discussed above, the theoretical modelling and analysis reveal the impact of 

social science on economic behaviour. In particular, it raises the question of how social 

structure influences the economic decisions and interactions of an individual. It is 

necessary to make a forecast of how the individual’s behaviour changes in response to 

network changes in a way that the individual would have a general idea of what will 
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occur when the network changes and adopt a corresponding behaviour to the present 

situation. The initial concept underlying network formation is that of costs and benefits, 

which not only reflects the perspective of an individual, i.e., that the individual forms 

relationships based on reciprocity, but also reflects the perspective of the society as a 

whole. It is not surprising that maximizing individual incentive may not reach the 

maximum of the societal welfare, which results in a tension between efficiency and 

stability within a network. This tension could be minimized by different channels but 

its intensity is difficult to be observed and measured, which may also depend on the 

specific feature of theoretical settings. These theoretical models not only provide the 

prospects about how the decisions of players contribute to the network formation, but 

also highlight their role in explaining phenomena of collaborations between firms. 

Kawamata and Tamada (2004) analyzed firm’s incentive to form pairwise links and 

pointed out that cost–sharing is a powerful incentive as it allows firms to pool their 

resources and avoid wasteful duplications. Similar results were also found in earlier 

studies (see d’Aspremont and Jacquemin, 1988; Kamien et al., 1992; Kamien and Zang, 

1993; Katz, 1986; Suzumura, 1992). In these cost–reducing alliance references, as 

summarized by Bloch (2004), either the collaboration covers all the companies in the 

industry (as in Kamien et al., 1992; Suzumura, 1992), or the industry can be 

partitioned into symmetric leagues (as in Kamien and Zang, 1993). Besides, Goyal and 

Moraga–González (2003) presented a survey of research on the formation of networks 

between firms and found that markets shape the firm’s incentives to form pairwise 

links, while links between firms affect their competitive position and thereby shape the 

function of the market. Goyal and Moraga–González’s (2001) analysis highlighted the 

relationship between market competition, firm’s incentive to invest in R&D, and the 

architecture of collaboration networks. Their results showed that the complete network 

is pairwise stable and industry–profit maximizing, and firms may engage in excessive 

collaborative activities in a model with endogenous choice of effort. Goyal and Joshi 

(2003) also studied the firm’s incentives to form collaboration links and found these 

incentives to be intimately related to the nature of market competition. Their results 

suggested that under quantity competition there is no conflict between efficiency and 

stability, whereas there is a conflict under price competition. Song and Vannetelbosch 

(2007) showed that the likelihood of a conflict between efficiency and stability is 

considerably reduced to cases of very small or quite large spillovers. They suggested 

that governments should be allowed to subsidize R&D whenever spillovers are not very 
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small. More recently, Zikos et al. (2010) proposed that state–owned enterprises may be 

used as policy instruments in tackling the potential conflict between individual and 

social incentives for R&D collaboration.  

    In the high technology industries, R&D collaborations between firms have become 

especially crucial, since the knowledge base and innovation process in these industries 

are diversified and rapidly developing. This high–tech environment requires that firms 

upgrade their knowledge and skills constantly to meet market conditions and 

customers’ expectations. Particularly in the pharmaceutical biotechnology industry, 

firms can no longer exclusively rely on their internal skills and knowledge to maintain 

their innovativeness. It is also necessary for them to access external sources of 

knowledge through collaborations and create innovative products to harvest the 

knowledge (Zahra and Bogner, 2000). Under these circumstances, in order to gain 

competitive advantages, pharmaceutical companies and biotechnology firms established 

inter–firm R&D collaborative network in a variety of partnership forms. This R&D 

network formation in fact grounds on the choice–based perspective that is emphasised 

in the network theories. From this view, the cooperation between pharmaceutical 

companies and biotechnology firms is based on their reciprocal interests to the extent 

of their complementarities. By connecting to biotechnology firms, large pharmaceutical 

companies could successfully undergo the challenges of technological innovation during 

so called “biotechnology evolution” and keep their dominant position in the high–tech 

industry (Chiaroni et al., 2008), while building up the cooperation with pharmaceutical 

companies provided biotechnology firms with important sources to sustain their 

innovative capabilities. This R&D network cooperation offers pharmaceutical 

biotechnology firms various opportunities to increase their efficiency of R&D efforts, 

reduce their cost and risk investing in the launching R&D projects, and create options 

for knowledge and innovation development. Thus, the R&D cooperation is a key factor 

in explaining the industrial growth of this high technology sector (Gottinger and Umali, 

2008).  

    However, the inter–firm R&D cooperation may potentially create negative 

externalities since a partner could simply attain the knowledge and patents through 

free–riding, which results in an essential conflict between private incentive and social 

incentive that we also observed in the network theoretical models. Yet from the 

prospects given by a variety of studies, different authors have different opinions about 

whether R&D cooperation could lead to such a conflict. Anbarci et al. (2002) pointed 
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out that if the degree of complementarity in a certain industry–pair is high enough, 

despite the typical free–riding problem, R&D group formation can secure high 

technological improvement, profits and social welfare; but if complementarity is 

extremely low, research cooperation may lead to lower profits and social welfare. Röller 

et al. (1998) suggested that R&D cooperation in complementary industries would seem 

to have positive welfare implications, while Katz et al. (1990) proposed that the private 

incentives for R&D investment are diminished relative to the social incentive. Although 

the puzzle still exists in the effects of research cooperation, the cooperative R&D efforts 

are generally encouraged by governmental policies, such as permissive antitrust 

treatment of R&D joint ventures and by cross–licensing agreements or similar 

arrangements among firms (Katz, 1986). Nevertheless, a cooperative R&D network 

serves as a mechanism that produces the information efficiency and consequent social 

benefit. It plays an important role in generating technology advances and expanding 

the stock of technological capabilities. The importance of R&D cooperation can indeed 

be observed through the growth of partnering activity in the high technology sector 

over the years (see Hagedoorn, 1995; Gulati, 1995). In the following, we will exhibit 

and analyze the evolutional cooperation trend in the pharmaceutical biotechnology 

industry during the period 1991–19982. The data source that has been used for Figure 2 

and Figure 3 is the Recombinant Capital database.  

 

                                                 
2 This time period was chosen since it covers the years in which inter–firm partnering activities in 
pharmaceutical biotechnology has risen rapidly (Galambos and Sturchio, 1998; Powell et al., 1996; 
Senker and Sharp, 1997). 
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Figure 2: The growth of firms and R&D partnerships in the pharmaceutical 
biotechnology network, 1991–1998; source: Recombinant Capital. 
 

    As shown in Figure 2, the historical data on inter–firm R&D partnering in the 

pharmaceutical biotechnology industry reveal an overall growth pattern in the time 

period 1991–1998: the number of firms which participate in the R&D network 

dramatically increases from 109 in 1991 to 466 in 1998. As a result, the number of their 

partnerships increases as well, reaching a peak of 640 in 1997 and then declining to 584 

in 1998. The important industrial and technological changes in this time period have 

led to the growing interdisciplinary nature of scientific and technological developments, 

increasing costs of R&D projects and higher risks surrounding R&D (Hagedoorn, 1993 

and 1996), which were a major force driving pharmaceutical companies and 

biotechnology firms into the cooperative research network. As a result, the network size 

and partnering activity in this high–tech sector largely increased overall (Figure 2).  

    Figure 3 provides a graphical representation of the evolutional structural changes of 

the inter–firm R&D network in the pharmaceutical biotechnology industry during the 

time period 1991–1998. Red orbs represent the pharmaceutical biotechnology firm 

within the R&D network and solid black lines with two arrows represent partnerships 

between two companies. The graph shows that the network gradually developed from 

isolated pairs of cooperating companies with a few clusters of multi–collaborator 
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networks to a large complex network with numerous interrelated companies. During 

the early 1990s, large pharmaceutical companies established absorptive capacity for 

assimilating new biotechnology knowledge and built up joint R&D agreements with a 

variety of biotechnology firms. As a result, by 1993, nearly 196 firms were involved in 

this research network representing 159 partnerships (Figure 2). There were still a 

number of one–on–one ties and some isolated research clusters in the early 1990s 

(Figure 3). For the mid–1990s, Figure 3 shows a denser, more connected R&D network 

in which around 300 firms (Figure 2) were engaged in a multitude of joint R&D 

agreements. This results from common research efforts and many newly established 

joint R&D agreements between pharmaceutical companies and biotechnological firms 

during these years. Although the majority of companies were connected to most other 

firms through many partnerships, there were still a few isolated companies cooperating 

amongst themselves, not linking up to any of the other network participants. However, 

in the late 1990s, a very large, extremely dense R&D network had developed involving 

466 companies (by 1998) that were nearly all connected to each other by numerous 

direct and indirect ties (Figure 2 and 3). Due to intensity of inter–firm cooperation in 

this high–tech sector, it would have been very unusual for a firm not to cooperate with 

others. Also, under the high–tech environment with dynamic and innovative knowledge 

base, a firm cooperating in a R&D network is less likely to retreat its participation 

from the cooperation (Powell et al., 1996). Thus, inter–firm cooperation, particularly 

the intensive R&D collaboration, is likely to remain an important feature of the 

pharmaceutical biotechnology sector (Powell, 1998; Senker and Sharp, 1997).  
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Figure 3: Inter–firm R&D 3D networks amongst cooperating companies in pharmaceutical 
biotechnology during the period 1991–1998; source: Recombinant Capital. 
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3   Actor–level Centrality and Network–level     

    Centralization: A Descriptive Analysis 

 

    In the last section, we have revealed that the pharmaceutical biotechnology R&D 

network experienced an evolutionary change in its size and structure during the time 

period 1991–1998. In such a complex network environment, not only network structure, 

but also a firm’s network position plays a crucial role in accessing relevant resources 

and information. In order to provide a quantitative analysis of a firm’s structural 

position in a network, we have employed Social Network Analysis (SNA), which serves 

as the methodical analysis of social networks and complements the traditional 

mathematical techniques. One of the primary applications in the SNA is the 

identification of the “most important” players in a social network. The players who are 

most important are usually located in central positions within the network, which can 

be quantified by various centrality measures (Wasserman and Faust, 1994). The three 

most widely used centrality indicators are degree, closeness and betweenness, 

representing different degrees to which a player is capable to extract value from his 

network. These centrality measures of the player can be aggregated over all actors 

within the network to obtain the measures of network–level centralization, indicating 

how centralized the set of players is as a whole. In this section, following Wasserman 

and Faust (1994), we will discuss the conceptions of actor–level centrality and 

network–level centralization, and their applications to and implications for the 

pharmaceutical biotechnology industry. In accordance with Section 2, the data source 

that will be implemented in this section is Recombinant Capital database and the 

chosen time period is 1991–1998. The software package for computing various network–

related measures is Ucinet 6 (Borgatti et al., 2002). Based on the actor–level centrality, 

the most important players in pharmaceutical biotechnology are defined in the time 

period 1991–1998. With the network visualization function included in Ucinet 6 

(Borgatti et al., 2002), a graph was drawn displaying the firm’s network position and 

interactions in the pharmaceutical biotechnology network (Figure 4).  
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3.1   Degree 

 

    The most intuitive measure of actor–level centrality is degree, which is based on the 

idea that actors are central in a communication network if information can easily reach 

them. An actor with a high degree centrality possesses more contacts to obtain 

information and resources, and thus is located at a more central position than others. 

In contrast, an actor with low degrees, who appears to be less visible in the information 

flows, is peripheral in the network. Even if such an actor decides to leave the network 

or is isolated from the relational process, it would hardly have any impacts on the 

present connections. According to Wasserman and Faust (1994), a degree–centrality 

measure ( )
D i

C n  for an individual actor should be the degree of the node ( )
i

d n , which is 

simply the number of an actor’s direct neighbours. For comparing this measure across 

different sizes of networks, we normalize ( )
D i

C n  by dividing the maximum possible 

value of degrees 1g − , assuming the network size is g . Thus, the normalized actor–

level degree centrality ′ ( )
D i

C n  can be written as 

 

′ =
−
( )

( )
1
i

D i

d n
C n

g
.                                         (1) 

This measure equals 1 at a maximum and attains the value of 0 at a minimum. In a 

directed network, we must distinguish between the number of arcs received by an actor 

(indegree) and the number of arcs sent (outdegree) (Knoke and Burt, 1983). However, 

this would not be the case in the inter–firm R&D network, since the cooperation 

between firms, especially in the high–tech sector, heavily depends on mutual exchanges 

of technological innovation and knowledge. As a result, a network comprising 

cooperating companies is undirected and each firm is simply characterized by its degree. 

The higher the degree of a firm, the larger and quicker information will reach this firm, 

and the more central is this firm.  

    In accordance with Wasserman and Faust (1994), the actor–level degree centrality 

measure can be aggregated across all actors to obtain degree–based network 

centralization. This aggregated index, which indicates the level of the entire set of 

actors, can be defined as 

*

1
2

( ) ( )

3 2

g

D D i
i

D

C n C n

C
g g

=

 − 
=

− +

∑
,                                 (2) 
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where ( )
D i

C n  in the numerator denotes the g  actor degree indices, *( )
D

C n  denotes the 

largest observed value, and the denominator3 of 2 3 2g g− +  is actually the maximum 

sum of the differences in actor degree centrality. This maximum difference sum occurs 

only for the star network, since the star network is the most centralized network and 

has the maximum degree variation. Hence, the degree centralization in the entire 

network can be interpreted as the variation in the actor’s degree in the observed 

network divided by the degree variation of a star network of the same size (Nooy et al., 

2005). It is also a measure of the dispersion of the actor’s degree indices, since it 

compares each actor index to the maximum attained value (Wasserman and Faust 

1994). This index varies from 0 to 1, with 0 indicating that all actor degrees are equal, 

and 1 indicating that one actor is connected to all other 1g −  actors and all other 

actors interact only with this single central actor.   

    Table 1 provides the normalized degree–based network descriptive statistics in 

pharmaceutical biotechnology over the period of the study. As it shows, the mean of 

normalized actor–level degree centrality decreases steadily during the time period 1991–

1998. This is because the network size, which serves as part of the denominator in the 

normalized degree index, increased dramatically over time (Figure 2). As for single 

company’s normalized degree centrality, we can see from Table 4 that Schering Plough, 

Affymetrix, Pfizer and SmithKline Beecham are each characterized by the highest 

normalized actor degree, which contributes to the judgement that they are regarded as 

the most central players in time period 1991–1998. Other firms which share the 

information with these four companies seem to distribute the information to others 

(Figure 4), possibly because they recognize their central positions, and consider it 

worthwhile to influence other firms in the network. In terms of degree–based network 

centralization in the pharmaceutical biotechnology industry, the observed value is 

rather low (Table 1). This value declines from 4.43% in 1991 to 2.17% in 1993 before 

reaching a peak of 4.63% in 1997, and then sharply decreases to 2.91% in 1998. Due to 

this low amount of concentration in the whole network during the time period 1991–

1998, the power of individual firms does not vary much. This shows that the overall 

positional advantages based on degrees tend to be relatively equally distributed in the 

pharmaceutical biotechnology network.   

                                                 
3 If the network is a star, the maximum value of *( )

D
C n is 1g −  for an actor and ( ) 1

D i
C n = , and thus 

the maximum sum of differences for 1g −  comparisons is 2( 1) 1 ( 1) ( 2)( 1) 3 2g g g g g g − − − = − − = − + 
.  
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3.2   Closeness  

 

    The actor–level closeness centrality, which is based on the graphical distance in a 

network, measures how close an actor is to all the other actors within the network 

(Wasserman and Faust, 1994). Unlike degree centrality, which only accounts for the 

connections to immediate neighbours, closeness centrality takes both, direct 

connections and indirect connections, into consideration. An actor with high closeness 

centrality scores can reach all the network members in a minimum number of steps and 

interact with them efficiently without going through many intermediaries, and 

consequently has more opportunities for information exchange and resource 

transactions. This centrality index is measured as a function of geodesic distances but 

inversely correlated to the distance: when geodesic distance increases, the closeness 

centrality scores decrease. Let ( , )
i j

d n n  denote the geodesic distance (shortest path) 

between the actors i  and j , the closeness centrality of an actor, ( ),
C i

C n  can then be 

expressed as the inverse of the sum of geodesic distances from actor i  to all other 

actors in the network, 
−

=

 
 
 
∑

1

1

( , )
g

i j
j

d n n . For comparisons of indices across different sizes 

of network, we normalize this closeness index through multiplying the inverse of the 

distance by the maximum possible distance 1g − , which can thus be defined as 

 
−

=

 
′ = −  

 
∑

1

1

( ) ( 1) ( , )
g

C i i j
j

C n g d n n   where j i≠ .                     (3) 

 

The normalized closeness index ranges between 0 and 1, reaching 1 when the actor is 

maximally close to all other actors. However, if a network is not strongly connected, 

the closeness centrality cannot be calculated due to the infinite distance between 

disconnected actors. This is the case in the pharmaceutical biotechnology R&D 

network, so instead of using closeness index above, normalized actor’s closeness 

centrality can be calculated with standardized reach closeness, which is an index of 

reach distance from each actor to all others adjusted to the network size. A smaller 

reach distance yields a higher closeness centrality score.  

    The network–level of closeness centralization is analogous to the degree 

centralization in that we compare the amount of variation in the closeness centrality 
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scores of the actors with the variation in closeness centrality in a star–network of the 

same size. The general network closeness index is based on the normalized actor–level 

closeness centrality and can be expressed as 

 

=

 ′ ′− 
=

− + −

∑ *

1
2

( ) ( )

( 3 2) (2 3)

g

C C i
i

C

C n C n

C
g g g

,                                 (4) 

 

where ′ *( )
C

C n is the largest normalized actor closeness in the set of actors and the 

denominator 4  of 2( 3 2) (2 3)g g g− + − is the maximum difference sum of the actor 

closeness centrality. The closeness centralization ranges from 0 to 1, with the index 

attaining its minimum of 0 when the lengths of geodesic distances are all equal. 

Unfortunately, the closeness–based network centralization in the pharmaceutical 

biotechnology industry cannot be computed since the star network does not necessarily 

have the highest variation in closeness centrality scores if the network is not strongly 

connected. However, descriptive statistics, as provided in Table 2, also disclose the 

closeness–based information at the level of the whole network.   

    It can be seen from Table 2 that the average normalized centrality of reach 

closeness remains constant during the period 1991 to 1993 and from 1994 on it raises 

steadily, reaching a peak value of 0.18 in 1997 and then declining to 0.15 in 1998. The 

gap between the minimum and maximum value of normalized reach closeness centrality 

is very small. This low variation results in the overall small value of standard 

deviations. 

    In terms of the specific actor’s centrality, we could take a look at Table 4, which 

shows that Schering Plough, Incyte Pharmaceuticals, Bayer and SmithKline Beecham 

have high centrality scores on reach closeness in the time period 1991–1998. Those 

firms with the highest closeness scores are able to reach the information in the network 

more easily and quickly since they are closer to all other firms. But if one of them 

leaves the network, this will strongly impact the overall network structure. If Schering 

                                                 
4 The maximum possible closeness occurs when an actor is at a distance of 1 from all other actors, and 
all other actors are at a distance of 1 from the center and at a distance of 2 from each other. Therefore, 
the closeness sum for each is ( 1) 1 2( 2) ( 1) (2 3)g g g g − + − = − − 

and yields a difference of 

1 ( 1) (2 3) ( 2) (2 3).g g g g− − − = − − Thus, for 1g − comparisons, the maximum possible difference is 
2( 1) 2 (2 3) ( 3 2) (2 3)g g g g g g− − − = − + − .  
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Plough, Incyte Pharmaceuticals, Bayer and SmithKline Beecham (Figure 4), for 

instance, quits from the R&D network, the network structure and the pattern of the 

knowledge flow in pharmaceutical biotechnology will dramatically change. 

 

 

3.3   Betweenness 

 

Degree and closeness centrality that have been applied earlier are mainly based on 

the reachability of an actor within a network. Another factor that could be considered 

for centrality is betweenness, which regards an actor as more central when he is more 

important as an intermediary between pairs of other actors in the communication 

network. More specifically, a central actor occupying a “between” position could 

control resource flow and coordinate information between network members that 

otherwise do not have a connection. The more network members depend on this actor 

to make connections with others, the more important the role of this actor is in the 

information flow. Thus, an actor with a high betweenness centrality score is strongly 

needed in a network as a link in the chains of contacts that helps distribute 

information. In accordance with Wasserman and Faust (1994), let 
jk

g denote the 

number of geodesics paths between actors j  and k , ( )
jk i

g n denote the number of 

geodesics between actors j  and k  that pass through actor i , the actor–level 

betweenness centrality ( )
B i

C n can thus be expressed as 
<
∑

( )
jk i

j k jk

g n

g
, which is the sum of 

probability of an actor i  standing along any geodesics5 that all pairs of actors in the 

network have selected. As with the other centrality standardizations, we normalize the 

betweenness centrality scores by dividing ( )
B i

C n  by the maximum possible 

betweenness6 2( 3 2) 2g g− +  so that it can be easily compared to the other actor 

                                                 
5 According to Wasserman and Faust (1994), 1

jk
g  is the probability that a message passes along any one 

of the actor j  and k , and thus ( )
jk i jk

g n g  is the probability that actor i  falls on a randomly selected 

geodesic linking actor j  and k , under the assumption that geodesics are equally likely to be chosen for 

the path.  
6 Since maximum betweenness centrality can be obtained only when there is an actor 

i
n  that falls on all 

geodesics of length greater than one,  the upper limit of ( )
B i

C n  is simply to compute the number of 

paths connecting pairs of actors where 
i

n  falls on the path between them. We know if all actors are 
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indices as well as across different sizes of networks. This normalized actor–level 

betweenness for 
i

n  is then given by 

 

<′ =
− +

∑
2

( )

( )
( 3 2) 2

jk i

j k jk

B i

g n

g
C n

g g
    for i j k≠ ≠ .                       (5) 

 

Compared to the closeness index, the betweenness centrality has the advantage that it 

can be computed even if the network is not strongly connected. This index takes a 

minimum value of 0 and a maximum of 1 when the actor i  falls on all geodesics.  

    Analogous to degree and closeness measure, the actor–level betweenness can be 

aggregated across actors to obtain the overall network centralization index, which 

allows us to compare different networks with respect to the heterogeneity of the actor’s 

betweenness. According to Wasserman and Faust (1994), betweenness centralization is 

simply the variation in the betweenness centrality scores of actors divided by the 

maximum variation in betweenness centrality scores possible in a network of the same 

size: 

 

*

1
3 2

( ) ( )

( 4 5 2) 2

g

B B i
i

B

C n C n

C
g g g

=

 − 
=

− + −

∑
,                               (6) 

                                

where *( )
B

C n  is the largest realized value of the betweenness centrality ( )
B i

C n . The 

denominator 3 2( 4 5 2) 2g g g− + −  is the maximum difference sum of the actor–level 

betweenness centrality7. This index reaches its maximum value of 1 in a star network 

                                                                                                                                                         
reachable, there are ( 1) 2g g −  paths connecting the unordered pairs in the network and of these, 1g−  

are connected to
i

n , so the maximum betweenness centrality is then 
2max ( ) ( 1) 2 ( 1) ( 1)( 2) 2 ( 3 2) 2

B i
C n g g g g g g g= − − − = − − = − + . 

7 According to Freeman (1979), the betweenness-based network centralization index is defined as the 

average differences between the relative centrality of the most central actor and that of all other actors. 
This calculation of standardized indices can be made equivalently with the network centralization based 
on betweenness as follows:  

= = = =

   
− −       − −− − − −    − + − +      = = = =

− − − − + − + −

∑ ∑ ∑ ∑
* *

* *
2 2

1 1 1 1
2 3 2

( ) ( )( ) ( )
2 2 ( ) ( ) ( ) ( )( 1)( 2) 2 ( 1)( 2) 2 3 2 3 2

.
1 1 ( 1)( 3 2) ( 4 5 2) 2

g g
g g

B i B iB B

B B i B B i
i i

i i

B

C n C nC n C n
C n C n C n C n
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C

g g g g g g g g
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and reaches its minimum value of 0 if all actors in the network are equal in 

betweenness.  

    As can be seen in Table 3, the average value of normalized actor–level betweenness 

centrality in the pharmaceutical biotechnology industry follows an increasing trend 

from 1991 to 1994, reaching a peak value of 1.26 in 1994, whereas it appears to have a 

decreasing trend from 1994 on, declining to 0.64 in 1998. The maximum value of this 

centrality substantially increases from 0.43 in 1991 to 25.44 in 1995 before declining to 

11.62 in 1996, and then it remains relatively stable until 1998. In terms of the specific 

company’s normalized betweenness centrality, Schering Plough, which is the most 

central firm in the time period 1991–1998 regarding its highest degree centrality and 

closeness centrality, appears to be the most important firm as well when betweenness 

centrality is taken into account (Table 4). It can be seen from Figure 4 that Schering 

Plough plays an important role in the communication between Du Pont and Incyte 

Pharmaceuticals. If Schering Plough fails to pass on information, Du Pont will not 

reach Incyte Pharmaceuticals any more. In contrast, University of British Columbia, 

Children’s and Women’s Health Center of British Columbia hardly fall on any geodesic 

pathways between other pairs of firms. They only form a small research cluster with 

Base4 Bioinformatics at an isolated network position that seems to be nearly 

disconnected from knowledge generated outside this small cluster (Figure 4).  

    With regard to the betweenness–based network centralization, the centralization 

score dramatically increases from 0.42% in 1991 to 24.37% in 1995 before decreasing to 

10.42% in 1997, and it slightly increases again to 11.17% in 1998 (Table 3). These 

network centralization values are rather low in the time period 1991 to 1993, and in 

1991 and 1992, they are even lower than the values of the degree–based centralization 

index (Table 1). However, in contrast to the low value of degree–based network 

centralization during the period 1994 to 1998, the observed values in betweenness index 

with the peak value of 24.37% in 1995 are moderately high. This indicates that even 

though most firms in the pharmaceutical biotechnology sector are linked to the R&D 

network, some of them are more active than others. 
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3.4   Most Important Players 

 

    Based on the actor–level centrality measures that have been discussed above, there 

are three advantages for a firm to be the most important player in a network: First of 

all, they have more contacts than others, that is, they have more opportunities to 

obtain information and resources than other firms within a network. Secondly, when 

they are at a more central position in the network, they are more reachable by other 

firms at shorter path lengths. This structural advantage allows them to interact with 

other firms quickly and access information more rapidly. The third advantage is that 

they are situated on more pathways between other pairs of firms. This allows them to 

broker contracts among other firms or prevent contracts by isolating other firms 

(Gulati, 1999; Wasserman and Faust, 1994). In Table 4, we have chosen the 40 most 

important players from the pharmaceutical biotechnology network in the time period 

1991–1998 based on their centrality scores of degree, closeness and betweenness. In 

order to visualize a firm’s position and interactions in the network, a graph containing 

186 companies8 in the pharmaceutical biotechnology R&D network in the period 1991–

1998 is presented (Figure 4). In this graph, the size of the node is adjusted by firm’s 

degree centrality: the bigger node in Figure 4 represents the firm with higher degree 

centrality. Particularly, the nodes of “important” and “non–important” companies are 

depicted by different colours: red nodes for the 40 most important firms (Table 4) and 

blue node for the remaining companies (Figure 4).  

As Table 4 shows, 10% of the 40 most important companies in the pharmaceutical 

biotechnology sector engage in commerce on both pharmaceutics and biotech, such as 

Corixa, Millennium Pharmaceuticals and Roche. The business of Amersham Pharmacia 

Biotech, as its name shows, is also twofold, since it results from a merger between 

pharmaceutical and biotech companies (i.e., UK–based Amersham International, 

Sweden–based Pharmacia Biotech and Norway–based Nycomed). Biotechnology firms 

account for 37.5%, while pharmaceutical companies account for 52.5% of the most 

important players of the pharmaceutical biotechnology sector (Table 4), which may 

imply that pharmaceutical firms play a more dominant role than biotechnology firms 

during 1991–1998. As can be seen in Table 4, the number one of the 40 most important 

                                                 
8 Due to a large number of pharmaceutical biotechnology companies that engaged in partnerships during 
the time period 1991–1998, it was impossible to draw the entire R&D network. For this reason, we have 
shrunk the network by removing firms with a degree centrality of less than 5.  
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players is the US–based pharmaceutical company Schering Plough (marked in bold) 

with the highest centrality score on all measures of degree, closeness and betweenness 

in the research network. Other large established pharmaceutical companies, such as 

Pfizer and SmithKline Beckman have also become nodal network players in the 1990s 

that are embedded in dense local research clusters with many participating partners 

(Figure 4). An important driving force here is possibly the second wave of the 

molecular biological revolution: genetic engineering, which opened up completely new 

areas for innovation (Gilsing et al., 2008). 

    The trend of the development in the pharmaceutical biotechnology network during 

the 1990s, however, is in contrast to that during the 1980s, as some authors proposed. 

Roijakkers and Hagedoorn (2006) indicated that with the emergence of biotechnology 

during the 1980s, the small entrepreneurial biotechnological firms had a leading role in 

the inter–firm R&D network. Also, they formed important bridges between research 

sub–networks surrounding large pharmaceutical companies. But in the 1990s, as Figure 

4 shows, the importance of these biotechnology firms decreased in the research network 

in comparison to the role of large pharmaceutical companies. Also, during this period, 

the role of these biotechnology firms as bridges between major sub–networks became 

less prominent. Overall, large pharmaceutical companies have developed into dominant 

star players with multiple partnerships while occupying central roles in the R&D 

network during 1991–1998. Nevertheless, in a long–term perspective, the 

entrepreneurial biotechnology firms will remain crucial partners for pharmaceutical 

companies due to the mutual dependence between the pharmaceutical industry and the 

biotechnology sector (Roijakkers, 2003).  

    The section above provides insights into the development of inter–firm 

pharmaceutical biotechnology R&D networks over time by evaluating the importance 

of network participants and research cooperation at the general network level with 

descriptive statistics based on the conceptions and measures of actor–level centrality 

and network–level centralization. In the next section, we will apply the econometrical 

techniques and Burt’s (1992) “structural hole” theory to identify what actually 

determines a firm’s centrality–based partnering capability in an inter–firm 

pharmaceutical biotechnology R&D network.   
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Figure 4: Inter–firm R&D network amongst cooperating companies in pharmaceutical biotechnology, 1991–1998; source: Recombinant Capital.
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4   Determinants of Firm’s Centrality–based Network 

Capability: An Empirical Perspective 

 

 

4.1   Hypotheses 

 

    In the dynamic and fiercely competitive pharmaceutical biotechnology industry, it is 

important for companies to keep pace with constantly developing innovations and meet 

changing customers’ needs. The success of a company is influenced by its ability to 

access diversified contacts with a variety of other firms to develop research resources. 

As a result, choosing suitable partners becomes crucial for improving a firm’s position 

in an inter–firm network. As indicated by the social network literature, the partner 

selecting skills of a firm are characterized by efficiency, which refers to the idea of 

avoiding the maintenance of redundant partnerships that carry little additional 

information (Granovetter, 1973; Burt, 1992). Redundant contacts not only provide 

redundant information, but also generate costs from building and maintaining them 

(Gulati, 1995 and 1999; Kale and Singh, 1999). However, if they were optimally 

avoided, firms could save the time and resources invested in unnecessary duplication of 

contacts and could use more resources to access valuable information from useful 

partnerships. Hence, strategic firms should carefully determine the additional value 

brought by new contacts and build up a non–duplicative network to gain adequate 

transfer of information. Within such an efficient network firms also have the advantage 

to create brokerage positions with control over information flows between other 

partners, thus attaining a central position in the network. Therefore, it is expected that 

a company with higher efficiency level would have larger centrality–based partnering 

capability.    

 

Hypothesis 1: In the pharmaceutical biotechnology network, the level of efficiency of a 

firm is positively correlated with its centrality–based partnering capability.  

 

    The inter–firm cooperation between pharmaceutical companies and biotechnology 

firms can also be explained by resource dependence theory (Pfeffer and Nowak, 1976). 

According to this resource–based view, different firms can be seen as different bundles 
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of resources. If a firm wants to exploit its stock of resources, it will be necessary to 

acquire complementary resources externally (Grant, 1991). This is especially the case in 

the pharmaceutical biotechnology industry. Alongside the usual difficulties of star–up 

companies, the biotechnology firms need large amounts of capital to fund costly 

research, market expertises and experiences with the regulatory approval process 

(Powell, 1998). Allying with large established pharmaceutical companies could provide 

them with a set of organizational capabilities and resources that they are lacking. 

Although the large pharmaceutical companies play a dominant role in the 

commercialization process, they often have been unable to create an internal research 

environment that would foster constant discovery and innovation. The biotechnology 

firms, however, could make up for this lack of internal capabilities and resources 

through various kinds of partnerships (Arora and Gambardelly, 1994; Powell et al., 

1996). As outlined above, there is a certain degree of mutual dependence developed in 

the R&D relationship between pharmaceutical companies and biotechnology firms. In 

this industry, a company with more dependency on complementary resources would 

have more opportunities to access multiple sources from the network and develop their 

innovative capabilities, and in turn, increase its ability to strategically place itself in a 

central network position among other firms. Thus, one might expect that firms with 

more dependency on complementary resources would have larger centrality–based 

partnering capability.  

 

Hypothesis 2: In the pharmaceutical biotechnology network, a firm’s dependency on its 

complementary resources is positively correlated with its centrality–based partnering 

capability.  

 

    Another feature of the pharmaceutical biotechnology industry is that it follows rapid 

unforeseen technological changes that have a major effect on the management of 

innovation within firms and also on their partnering activities (Eisenhardt and Bird–

Schoonhoven, 1996; Hagedoorn, 1993). It requires firms to identify new projects quickly 

and to launch them into the market strategically. This ability could be improved by a 

firm’s experiences at managing inter–firm partnership. Firms with more partnering 

experiences may increase their specific knowledge about when to form a partnership, 

whom to partner with, and how to value external sources of technological knowledge, 

and in turn, they could effectively react to unexpected events that may occur in its 
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links to other firms and locate themselves in information–rich positions which are 

central in the network (Gulati, 1999; Levinthal and March, 1993). In other words, the 

development of a firm’s experience at managing partnerships enables it to find a well–

developed network position and thus increase its centrality–based partnering capability. 

Furthermore, more experiences at managing partnerships allow the firm to build up its 

reputation as skilled and knowledgeable partner. This makes it an attractive partner 

for other companies in the network, and hence the firm could better access sources 

from others and gain competitive advantages to obtain a central network position 

(Brass et al., 1998; Hagedoorn et al., 2006). This leads to the next hypothesis.  

 

Hypothesis 3: In the pharmaceutical biotechnology network, the partnering experiences 

of a firm are positively correlated with its centrality–based partnering capability.  

 

 

4.2   Research Methods 

 

4.2.1   Research Setting 

 

    The network environment that is chosen here is the global pharmaceutical 

biotechnology sector. In this high–tech sector there is an abundance of inter–firm 

partnerships and substantial R&D partnering activities (Powell, 1998; Walker et al., 

1997). The sector comprises new biotechnology firms dedicated to commercializing the 

new technology such as Genentech, and large pharmaceutical companies such as Eli 

Lilly that participate in biotechnology for drug development and commercialization 

(Rothaermel, 2000). R&D partnerships are an important form of inter–firm 

collaboration in this sector (Hagedoorn and Roijakkers, 2002). As described below, 

there are two main reasons why the pharmaceutical biotechnology industry is 

interesting for the analysis from the perspective of inter–firm strategic networking in 

the context of R&D partnerships.  

    First of all, the pharmaceutical biotechnology industry provides a prime example for 

studying the development of inter–firm R&D collaboration. The historical background 

of this sector is interesting and unique. During the 1950s and 1960s, large 

pharmaceutical companies mainly followed a “going–it–alone” research strategy so that 

inter–firm R&D collaboration did not play a crucial role (Roijakkers, 2003). However, 
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along with the biotechnology revolution in the 1970s, the pharmaceutical industry 

experienced a dramatic change in knowledge and technology developments and was to 

some extent forced to change their research strategies to include a great variety of 

R&D partnerships (Roijakkers, 2003). Later, in the 1980s and 1990s, technological 

collaboration continued to be a significant feature in the pharmaceutical biotechnology 

industry. Secondly, the cooperation formed in the pharmaceutical biotechnology 

industry has led to the emergence of a strong dual market structure, which is developed 

by large established pharmaceutical companies and small research–intensive 

biotechnology firms (Powell et al., 2005; Saviotti, 1998). The capabilities and resources 

of these two groups of firms were complementary, resulting in numerous inter–firm 

partnerships in the R&D network.  

In this research setting, balanced panel data was applied, since a panel data set 

follows a given sample of cases over time (in this case, pharmaceutical biotechnology 

companies), thus providing multiple observations on each of the cases in the sample 

(Baltagi, 1995). Based on actor–level centrality measures (as discussed in Section 3), 

only those companies, which were considered to be the most important players in the 

pharmaceutical biotechnology sector during the period 1991–1998 (Table 4 in Section 

3), were selected. However, in the empirical setting, the time period was shortened to 

1995–1998 because from the mid–1990s, a new pattern of innovation emerged in the 

pharmaceutical biotechnology sector where innovation was largely concentrated in 

dense networks of inter–firm R&D partnerships (Roijakkers, 2003). Therefore, the 

sample that was analysed comprised the 40 most important pharmaceutical 

biotechnology companies that were cooperating through multiple partnerships during 

the period 1995–1998 leading to 160 observations.  

 

 

4.2.2   Variables  

 

    The dependent variable that was used to describe a firm’s partnering centrality–

based capability within a network is the logarithm form of the betweenness centrality, 

which indicates the percentage change in betweenness centrality as an extra unit 

change in the explanatory variable. As shown in Section 3, the betweenness measure of 

centrality is based on the idea that the player positions itself on the shortest path 

between other pairs of players in the network and it regards a firm’s capacity to 
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control information exchange between other companies in a network. The more firms 

depend on a focal firm to make linkages with other firms, the more power and influence 

this focal firm gains. In this study, normalized centrality measure of betweenness was 

used because an absolute measure of betweenness cannot be used to compare firms’ 

centralities for different sizes of network. This normalized measure ranges between 0 

and 1, with higher scores indicating greater firm centrality in a network relative to 

other network partners.  

Two of the independent variables are based on the network theory of “structural 

hole” proposed by Burt (1992). According to this author, “structural hole” indicates a 

relationship of non–redundancy between two contacts. By bridging structural holes, the 

player can obtain non–redundant information and in turn occupy an advantageous 

position within the network. In other words, network benefits accrue to those actors, 

who broker connections between unconnected groups of players. For instance, if a 

company knows a lot of other firms which are disconnected from each other, it would 

have the chance to detect and develop brokerage opportunities between them. However, 

if all other firms are all tightly connected, broker opportunities would be difficult to 

attain. There are mainly two conceptions from the theory of “structural hole” that 

could be applied in the current study: efficiency size and hierarchy, both of which are 

well–established measures in the inter–firm network literature (see Abbasi and 

Altmann, 2010; Buskens and Rijt, 2008; Chung and Hossain, 2008; Hagendoorn et al., 

2006; Okoli and Oh, 2007; Roijakkers, 2003).  

    According to social network theory (Burt, 1992), a firm’s efficiency can be indicated 

by its efficiency size, which measures what proportion of a focal firm’s contacts to its 

partners is non–redundant. Hence, the efficiency size of a focal firm i  is the sum of the 

non–redundant portion of i ’s connections with all other firms in the network divided 

by the number of its partnerships, N . It can be normally defined as 

 

1
= 1 ,  ,

i iq jq
j q

Efficiency p m q i j
N

 
− ≠ 

 
∑ ∑                        (7) 

 

where 
iq jq

p m  denotes that the information access, timing, and referrals the focal firm i  

gets through its contact j  are redundant to the extent that firm i  has a substantial 

investment of time and energy in a relationship with another partner, q , to whom its 
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partner j  has a strong relation9. Aggregating 
iq jq

p m  across all contacts q  measures the 

portion of i ’s relationship with j  that is redundant to i ’s relations with its other 

primary contacts. Thus, 1 minus this expression is the non–redundant portion of the 

relationship. With respect to the “structural hole” theory, the sum across relationships 

of the non–redundant portion divided by the number of the focal firm i ’s total links is 

the normalized number of non–redundant contacts in firm i ’s network. This efficiency 

ratio varies from a minimum approaching 0, indicating high contact redundancy which 

implies low efficiency, to a maximum of 1, indicating that every contact in the network 

is non–redundant. 

    Efficiency size (as discussed above) can be used to indicate the efficiency level of a 

focal firm’s network and therefore is a suitable measure for Hypothesis 1. To test the 

prediction of Hypothesis 2, a hierarchy measure was used in this study, which is in fact 

an adjustment of a constraint measure. Constraint indicates the degree of dependency 

in the partnerships of a firm. In other words, it measures the extent to which a firm 

has partners that cooperate intensely among themselves (Hanneman and Riddle, 2005). 

For instance, if a focal firm i ’s partners all have many potential partners on their own, 

the constraint posed on firm i  is high. However, if the local network of firm i  is 

sparsely linked so that its partners do not have other alternatives in the neighbourhood, 

the degree of constraint posed on firm i  would be low. According to Burt (1992), 

constraint refers to the focal firm i ’s investment in reaching partner j  multiplied by 

the lack of structural holes around j  with which firm i  could negotiate a favourable 

rate of return on investment. Investment is defined as the proportion of the focal firm 

i ’s network time and energy that leads to partner j  and the lack of holes around j . 

Their product defines partner j ’s constraint on firm i : 

 
2

( 's investment in reaching )(lack of holes around )= ,
ij ij iq qj j

q

c i j j p p p O i q j
 

= + ≠ ≠ 
 

∑  (8) 

                                                 
9 

iq
p  is the proportion of firm i ’s network time and energy invested in the relationship with partner q  

(interaction with q  divided by the sum of firm i ’s relations), ( )
 
 = + + ≠
  
∑( ) ,

iq iq qi ij ji

j

p z z z z i j , and 

jq
m denotes the marginal strength of partner j ’s relation with contact q  (interaction with q  divided by 

the strongest relation of j ), = + + ≠( ) max( ),
jq jq qj jk kj

m z z z z j k , where 
ij

z , a general cell of matrix Z 

transformed from the dichotomized matrix, is the network variable measuring the strength of the 
relation from i  to j  (Burt, 1982).  
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and the aggregate constraint on firm i , = ∑ ij
j

C c , is the sum of constraint from i ’s 

partnership with each of the N  partners10. The partner–specific constraint ranges from 

a minimum of 0 to a maximum of 1, with 1 representing that j  is the only partner of 

firm i  and 0 representing that j  has no partnership with firms with whom firm i  

could replace partner j  (Burt, 1992).  

    Hierarchy, which describes the nature of the constraint on a focal firm, measures the 

important property of dependency to the extent that it indicates the inequality in the 

distribution of constraints on a focal firm across other firms in its neighbourhood 

(Hanneman and Riddle, 2005). If the total constraint on a focal firm is concentrated on 

a single other actor, the hierarchy measure will have a higher value. If the constraint 

results more equally from multiple companies in the focal firm’s neighbourhood, 

hierarchy will be less. This hierarchy measure can be calculated using the following 

two–step procedure. First, for each partner j  of firm i , the ratio of partner–specific 

constraint to the average level of constraint per partner ij
c

C N
 is computed, where 

C N  is the average constraint per partner.  This ratio indicates how much one specific 

partner j  is considered to be a more severe source of constraint to firm i  than any of 

its other partners. In the next step, the Coleman–Theil disorder index is applied to 

compute the actual hierarchy measure. This method multiplies the sum of all partner–

specific constraint ratios by its natural logarithm and divides the product by the 

maximum sum possible. Thus, the hierarchy measure of a focal firm i  can be stated as 

 

                                                 
10 

iq qj
p p  denotes that firm i ’s entrepreneurial opportunities are constrained to the extent that another of 

firm i ’s partner q , in whom firm i  has invested a large proportion of his network time and energy, has 

invested heavily in a relationship with firm i ’s partner j . Aggregating 
iq qj

p p  across all contacts q  

(excluding firm i ) and adding i ’s direct connection with j  defines firm i ’s investment in reaching 

partner j : + ≠∑ , ,
ij iq qj

q

p p p q i j . The lack of structural hole is measured as 

lack of holes around  = ,
ij iq qj j

q

j p p p O i q j
 
 + ≠ ≠
 
 

∑  where 
j

O  denotes the organization of players 

within the cluster around partner j  so that it would be difficult to replace j  by other partners in the 

cluster. 
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( )ln( )

ln( )

ij ij

j

i

c c

C N C N
Hierarchy

N N
=
∑

                              (9) 

 

This measure attains its minimum of 0 when constraint is the same for each partner of 

a firm, and reaches its maximum of 1 when all constraint is concentrated on a single 

partnership.  

    In order to examine Hypothesis 3, the experienced–based independent variable was 

computed. For this, the measure of number of inter–firm R&D partnerships of firms 

was used, since it could reflect the experience of the focal firm in cooperation with 

other firms. The more partnerships a focal firm has, the more cooperative experience it 

gains and the more it benefits from the inter–firm cooperation between companies. 

Based on the inter–firm network literature (e.g., Hagendoorn et al., 2006; Roijakkers, 

2003), indicators of duration and time effects were applied as control variables in this 

study. In the chosen model, the time since the last R&D partnership was established is 

controlled. For this, the variable “duration” was constructed to track the time elapsed 

since the former partnership of firms and set to 0 at the outset. Besides, the presence of 

a particular trend in new R&D partnership formation over time could potentially bias 

the results. To control possible effects of time, the year dummies “time effect (1995–

1998)” were included by using the year 1995 as reference. 

    Dependent variable, efficiency measure, hierarchy measure and the experience–based 

independent variable were all calculated with Ucinet 6 (Borgatti et al., 2002). The 

basic source of information for Ucinet 6 was the Recombinant Capital database, which 

is a binary, symmetric adjacency matrix containing the partnerships between the firms 

in a network. Separate matrices for each year were calculated to obtain the value of the 

network related measures for certain chosen companies.  

 

 

4.2.3   Statistical Methods 

 

    As stated in Hypothesis 1, a firm’s efficiency is predicted to raise its centrality–

based capacity in the pharmaceutical biotechnology industry. A firm with higher 

efficiency to choose collaboration partners may have a larger capability to place itself 

in a central position within the network. In this relationship, from the econometrics 
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point of view, it is necessary to consider the potential existence of “reverse causality”, 

where the efficiency of a company is likely determined simultaneously along with its 

centrality–based partnering capability. Some authors (e.g., Hagedoorn and Duysters, 

2002; Hagedoorn et al., 2006) suggest that a company with a central position in an 

inter–firm network would have more information about the position of other firms in 

the network and their information flows, which enables it to use its centrality–based 

capability to delete duplicating partners, thus gaining high efficiency. Therefore, firm’s 

ability to obtain a central position within the network may partially determine the 

level of its efficiency to select suitable partnerships. If the traditional ordinary least 

squares (OLS) method in a linear regression model11:   

 

= +
i i i

y X ß u                                         (10) 

 

is adopted in the presence of reverse causality between firm’s efficiency and its 

centrality–based capability, it is highly likely that this model will be inconsistent, 

meaning that due to the endogeneity of a firm’s efficiency, changes in its efficiency level 

are associated not only with changes in the dependent variable of firm’s centrality–

based capability but also with changes in the error term of the model (see equation 

(10)). What is needed in this case is typically a method to generate only exogenous 

variation for firm’s efficiency level. An obvious way to do this is through an experiment. 

The application of instrumental variables (IV) method provides a way to obtain 

consistent parameter estimates if suitable instruments exist. There are various 

instrumental variable methods that could be applied to a model’s endogeneity problems. 

In this study, the two–stage least squares (2SLS) and the optimal generalized method 

of moments (GMM) were used, the latter of which was named also after the two–step 

feasible efficient GMM.  

    The 2SLS estimator, as its name indicates, is obtained by two consecutive OLS 

regressions: In the first stage, the fitted value of a firm’s efficiency is obtained from the 

OLS regression of the firm’s efficiency on 1, included explanatory variables and 

instrumental variables. In the second stage, we run another regression by OLS of 

dependent variable of the firm’s centrality–based capability on 1, included explanatory 

                                                 
11 

i
y  denotes the centrality–based partnering capability of a focal firm i , 

i
X  denotes the matrix of the 

regressors including firm’s efficiency level and other explanatory variables, ß  is the coefficient estimator 

which ranges from 0 to 1, and 
i

u  is the error term.  
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variables and fitted value of the firm’s efficiency that was obtained in the first stage, 

which gives a consistent 2SLS estimator. Although the 2SLS estimator is consistent, it 

could be inefficient in the presence of heteroskedasticity, which indicates that the error 

terms do not have constant variance. This problem can be partially addressed through 

the use of robust standard errors in the 2SLS model, in which a consistent estimate of 

the variance–covariance matrix for the error term could be derived (Baum et al., 2003 

and 2007). Another solution, introduced by Hansen (1982), is the optimal GMM 

method, which makes use of the orthogonality conditions to allow for efficient 

estimation in the presence of heteroskedasticity of unknown form. If heteriskedasticity 

is indeed present, the optimal GMM estimator is more efficient than the 2SLS 

estimator, whereas if in fact the errors are homoskedastic, the 2SLS estimator would be 

more preferable than the estimator of optimal GMM (Angrist and Pischke, 2009; 

Cameron and Trivedi, 2005). For this reason, a test for the presence of 

heteroskedasticity is necessary for deciding whether the 2SLS model or the optimal 

GMM is called for. In the model that was chosen here, the presence of 

heteroskedasticity is not completely clear since the standard tests such as Breusch–

Pagan/Godfrey/Cook–Weisberg and White/Koenker test statistics show that 

heteriskedasticity is present in the model, while the Pagan–Hall test statistic (Pagan 

and Hall, 1983) indicates the error terms are homoskedastic. Therefore, both 2SLS 

estimator and GMM estimator will be applied successively to the model. The results 

from the methods of 2SLS, 2SLS with robust standard errors and optimal GMM will be 

presented in this paper.  

    In order to better exhibit the methods that will be used in the research, 2SLS 

estimator and optimal GMM estimator will be given in their original matrix form as 

follows. We now consider the model in equation (10) again, where X  presents a n K×  

matrix of regressors with n  being the number of observations. As discussed above, 

firm’s efficiency to select partnerships is considered to be endogenous, so we need to 

generate exogenous variation for firm’s efficiency level by choosing a n L×  matrix of 

instrumental variables Z . In this case, the number of instruments excluded from the 

equation exceeds the number of included endogenous variables (L K> ), so the applied 

model is overidentified. 2SLS is a common procedure for overidentified model. Given a 

set of K  instruments: −′ ′ ′= =1ˆ ( )
Z

X Z Z Z Z X P X  where 
Z

P denotes the projection matrix 

−′ ′1( )Z Z Z Z , the 2SLS estimator can be written as 

− −′ ′ ′ ′= =1 1
2

ˆ ˆ ˆ( ) ( )
SLS Z Z

ß X X X y X P X X P y (Cameron and Trivedi, 2005; Wooldridge, 2002). 
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The standard 2SLS estimator can be regarded as a special case of GMM estimator and 

under the exogeneity assumption of instrumental variable, =( ) 0
i i

E Z u , we now shortly 

derive a linear GMM model. GMM requires that a certain number of moment 

conditions were specified for the model, such as L  instruments generating a set of L  

moment conditions, ′ ′= = −ˆ ˆ( ) ( ),
i i i i i i

g ß Z u Z y X ß  where 
i

g is 1L ×  matrix. These 

moment conditions are functions of the model parameters and the data, such that their 

expectation is zero at the true values of the parameters: =( ( )) 0
i

E g ß . Since each of the 

L  moment equations corresponds to a sample moment, we can write these L  sample 

moments as 
=

′ ′= − =∑
1

1 1ˆ ˆ ˆ( ) ( )
n

i i i
i

g ß Z y X ß Z u
n n

 (Wooldridge, 2002).  The GMM method 

then minimizes a certain norm of the sample averages of the moment conditions, 

′=ˆ ˆ ˆ( ) ( ) ( )J ß ng ß Wg ß  where W  is a L L×  symmetric weighting matrix (Angrist & 

Pischke, 2009). GMM estimator is consistent for any symmetric positive definite 

weighting matrix W , however, the efficiency of this estimator is not guaranteed for an 

arbitrary W , which possibly leads to an inefficient estimator in GMM. Hansen (1982) 

chooses optimal weighting matrix −= 1W S  (S  is the covariance matrix of the moment 

conditions to produce the most efficient estimator) to produce the most efficient or 

optimal GMM estimator, which can be written as − − −′ ′ ′ ′= 1 1 1ˆ ˆ ˆ( )
OGMM

ß X ZS Z X X ZS Z y  

(Cameron and Trivedi, 2005; Wooldridge, 2002). 

    Even when 2SLS and optimal GMM is judged to be the appropriate estimation 

technique, we may still question its validity in a given application. “Good instruments” 

should be both valid and relevant (Baum et al., 2003). In order to evaluate the validity 

of the instruments, we may cast some lights on whether the instruments are 

independent from an unobservable error process in the context of an overidentified 

model. If orthogonality conditions were satisfied to the extent that instruments are 

uncorrelated with the error term, the instrumental variables would be valid. To test 

this validity of the instruments, we could make use of the overidentification test: In 

terms of GMM, the overidentifying restrictions may be tested via the commonly 

employed J  statistic of Hansen (1982), while Sargan’s statistic (Sargan, 1958), which 

uses an estimate of the error variance from the IV or 2SLS regression with the full set 

of overidentifying restrictions, is largely used for 2SLS method. By computing the 

difference–in–Sargan test or difference–in–J statistics, the endogeneity test, which is 

essentially testing whether the instrumental variable method is required to estimate the 
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model, can be implemented (Baum et al., 2003). This test is equivalent to estimating 

the same regression but treating the regressor as exogenous, and then testing the 

corresponding orthogonality conditions. The null hypothesis of this test is that the 

specified endogenous regressor can actually be treated as exogenous. To address the 

relevance of the instrumental variable, we need to consider whether the instruments are 

correlated with the endogenous regressor. If the instruments are both correlated with 

the endogenous variable and orthogonal to the error process, the 2SLS estimator or 

GMM estimator will be consistent. However, to ensure an indeed good performance of 

the IV estimator, it should be considered whether the instruments are weak. The 

concept of a weak instrument is that the correlations between the endogenous regressor 

and the excluded instruments are nonzero but small (Cameron and Trivedi, 2005). 

Thus, if low correlation exists between the instrument and the endogenous variable 

being instrumented, the model is said to be weakly identified. In order to test the 

presence of weak instruments, the Stock–Yogo test (Stock and Yogo, 2005), which 

makes use of F–statistic form of the Cragg and Donald (1993) statistic, is commonly 

carried out.  

    The statistical methods of 2SLS and GMM and the tests for “good instruments” 

that are discussed above can be implemented by using Stata 11 (StataCorp, 2009), 

which is a statistical software package for data management, data analysis, and 

graphics. In this study, the data that was computed with Ucinet 6 (Borgatti et al., 

2002) based on Recombinant Capital database (see Section 4.2.2) was imported into 

the software Stata, and processed with the relevant commands. In particular, the 

“ivreg2 package” was applied (Baum et al., 2002), which provides the extension to 

Stata software and is a suitable package for the panel data.  

 

 

4.2.4   Choice of Instrumental Variables  

 

    As discussed in Section 4.2.3, due to reverse causality, a firm’s efficiency, which is 

likely to be endogenous, needs to be instrumented with exogenous variables. In order to 

generate sufficient exogenous variation, a few instruments were considered to solve the 

endogenous problem. One candidate for the instrument is the firm’s clustering 

coefficient, which is calculated by the proportion of cooperation that exists between 

firms and its neighbourhood divided by the number of cooperation that could possibly 
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exist between them. This concept could be further interpreted as the probability of 

which two collaborated partners of one firm in the network are connected to each other 

(Cantner and Rake, 2011), which is simply an indicator of the density of a firm’s local 

neighbourhood (Hanneman and Riddle, 2005). The clustering coefficient is likely to 

influence a firm’s efficiency to choose partners in the sense that the dense contacts 

among a firm’s partnerships may cause redundant information and consequently reduce 

a firm’s efficiency. This instrument can be calculated with the software Ucinet 6 

(Borgatti et al., 2002). The second candidate for the instrument could be the sector 

dummy of biotechnology. The biotechnology driven by innovation and discovery is 

largely used in manifold industrial manufacturing processes. Its advanced technical 

process, which reduces the environmental impact, improves the process efficiency and 

lowers the production costs, has advantages over traditional pharmaceutical process 

(EU, 2007). In a study on the Canadian biotechnology industry, Baum et al. (2000) 

found that biotechnology firms that were better able to leverage alliances, in particular 

R&D alliances, grew at higher rates than others. Similar results were found in a 

comprehensive EU study on the biotechnology industry in Europe (EU, 2002). The 

question, whether the sector is biotechnology is important to the firm’s efficiency, 

because the biotechnology firms with newly updated, non–redundant information could 

efficiently choose the suitable partners by themselves in a rapidly developing 

technological environment.  

    Besides, a firm’s national–geographic origin may also influence its efficiency to the 

extent that firms from various countries may have different levels of efficiency in 

gaining technological information. For instance, in the US, biotechnology is 

characterised by a high degree of concentration of firms in a restricted number of 

geographic regions. A similar process of clustering has taken place across Europe, with 

examples such as the biotech–region Munich and the Medicon Valley shared by Sweden 

and Denmark. However, in comparison with the US company structure, the majority of 

European biotechnology clusters do not seem to be big enough to compete effectively 

with those in the US (EU, 2007). In order to control for these effects, a set of national 

origin dummies was considered: US, England, Germany, Denmark, Switzerland, 

Sweden and Ireland. Among these national dummies, US, Germany and Denmark 

indicate closer correlations to the efficiency of a firm. Therefore, these three country 

dummies were included into the instrumental variable list. Another candidate for the 

instrumental variable could be the firm’s age, which can be simply calculated from the 
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firm’s foundation year. Firm’s age is related to the firm’s efficiency in the way that 

older firms with a higher number of cooperative arrangements are more experienced in 

the industry than younger firms (Rothaermel, 2002). Hence, older firms are more likely 

to detect opportunities for building up non–redundant contacts in the network and are 

thus more efficient in choosing partnerships.  

    Therefore, clustering coefficient, firm’s age, sector dummy of biotechnology, and 

national dummies of US, Germany and Denmark were used in this study as 

instrumental variables to generate exogenous variation for the firm’s efficiency, which is 

considered to be endogenous. All these instruments are likely to influence a firm’s 

efficiency level, but will not directly determine the dependent variable of a firm’s 

centrality–based partnering capability.  

    In order to obtain data for instrumental variables, we collected information on the 

national origin, foundation year and industrial sector provided by each firm in our 

population. Various sources of information were used such as the Institute for 

Biotechnology Information (BioSpace, BioCentury, and Funding Universe), US Small 

Business Innovation Research (SBIR) / Small Business Technology Transfer (STTR), 

Bloomberg Businessweek and Washington Post’s Linkages.  

 

 

4.3   Results 

 

    Table 5 provides descriptive statistics of explanatory variables for the 160 

observations in the sample and a correlation matrix. The variances were relatively low 

on all variables since the sample only represents the prominent firms in the 

pharmaceutical biotechnology industry over years, which would not cause huge data 

differences between observations. And as would be expected, the dependent variable 

(the logarithm form of betweenness centrality) was highly correlated with the 

normalized number of firm’s partnerships. Table 6 displays the estimation results of 

instrumental variable panel models using Stata 11(StataCorp, 2009). In model 1 and 

model 2 the standard 2SLS procedure was used, in which the independent error terms 

are assumed to be homoskedastic, while in model 3 and model 4 the 2SLS estimator 

was also used but the error terms of the models are robust to heteroskedasticity. 

Optimal GMM method, which allows for efficient estimation in the presence of 

heteroskedasticity, was used for model 5 to model 7. It can be seen from Table 6 that 
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the p–value in the endogeneity test was less than 1% in all models, so we can reject the 

null hypothesis that the firm’s efficiency may be treated as exogenous. Thus, firm’s 

efficiency is endogenous and instrumental variable methods are the appropriate 

estimation technique in our setting. As Table 6 also shows, the p–values in the 

overidentification test for model 1—model 7 were all larger than 10%, hence, we cannot 

reject the null hypothesis that the instrumental variables are uncorrelated with the 

residuals, which implies the instrumental variables that we chose are valid. However, 

the F statistics in Stock–Yogo test (Stock and Yogo, 2005) suggest that these 

instrumental variables could probably be weak instruments and the models are 

therefore weakly instrumented.  

In model 1, model 3 and model 5, we estimated firm’s centrality–based partnering 

capability as a function of its efficiency level, its dependency on complementary 

resource, its experience at managing partnerships, its duration in the partnerships and 

time effects (1996–1998). As time effects of 1996 and 1998 did not seem to affect firm’s 

ability to be central (see Table 6), we dropped both of them in model 2, model 4 and 

model 6. After dropping time effects of 1996 and 1998, firm’s efficiency did not appear 

to significantly influence firm’s partnering capability anymore in model 6, even though 

it exerted influence in model 5. So we reestimated model 6 by excluding the clustering 

coefficient and country dummy Denmark from the instrumental variable list. As a 

result, the significance level of firm’s dependency on complementary resources changed 

from level 10% to 5%, and firm’s efficiency had impact again on its centrality–based 

capability as shown in model 7 (Table 6). Also, as we respecified the instruments list, 

the p–value in the overidentification test became larger when comparing model 7 to 

model 6. With the same set of variables, the models using methods of 2SLS and 2SLS 

with robust standard errors had exactly the same coefficient estimates, but different 

standard errors due to the potential presence of heteroskedaticity. However, after we 

reestimated the overidentified model using the optimal GMM method, the coefficients’ 

point estimated changed slightly and standard errors decreased (Table 6), which 

generally indicates the model to be more efficient. 

We hypothesized that firm’s efficiency level is expected to have a positive impact on 

firm’s centrality–based network capability (Hypothesis 1). The estimates of the 

indicator for firm’s efficiency (efficiency size) were positive and significantly different 

from zero in the 2SLS models, 2SLS with robust standard error models and also in the 

optimal GMM models (only model 5 and 7). Thus, the instrumental variable methods 
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provide evidences that support a firm’s efficiency to choose suitable partners as an 

important factor to determine its centrality–based partnering capability. Hypothesis 2 

argues that the more a firm is dependent on its complementary resources, the higher 

the centrality–based network capability of this firm is. Model 1—model 7 all present 

that the estimates of the indicator for dependency (hierarchy measure 12) have a 

significant, negative effect on firm’s betweenness centrality. So a firm’s dependency on 

its complementary resources was identified in the present study as another crucial 

factor for determining a firm’s centrality–based partnering capability. Hypothesis 3 

predicted that a firm with more experiences at managing partnerships tend to have a 

larger centrality–based network capability. The estimates of the indicator for firm’s 

partnering experiences (normalized number of firm’s partnerships) in all of the models 

in Table 6 are positive and differ significantly from zero which implies a positive 

impact on a firm’s ability to act centrally. Firm’s partnering experience is therefore also 

an essential determinant for its centrality–based network capability. In sum, all three 

hypotheses are largely supported by the instrumental variable panel models and the 

results clearly indicate that a firm’s efficiency, its dependency on its complementary 

resources and its experience at managing its partnerships are relevant determinative 

factors for a firm’s centrality–based partnering capability. 

 
 

4.4   Discussion  

 

    Firms that are centrally positioned within a network can better control and exploit 

worthwhile opportunities for obtaining information through links to other firms, and in 

turn gain competitive advantages in the marketplace. This central position of a firm 

plays an especially important role in the high technology industry with substantial 

innovation and knowledge transfer between different sectors. From a managerial 

perspective, positioning the firm centrally requires capable managers to improve their 

information efficiency and their skills to choose suitable partners. The results of the 

present study suggest that it is beneficial for managers to get access to information 

through a number of diverse contacts, avoiding duplicating contacts which leads to 

inefficient networks. Besides, the manager may also keep in mind that a partner may 

                                                 
12 Hierarchy measure is negatively related to firm’s dependency on its complementary resources as 
discussed in Section 4.2.2. 
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either unpredictably free–ride by limiting its dedication in an inter–firm cooperation or 

simply adopt opportunistic behaviours, which could cause informational hurdles in the 

cooperation network (Gulati, 1995). Thus, a good access to market information is 

essential to find an appropriate partner. Firms can learn about potential partner’s 

capability and reliability from many sources, one of which is their network of prior 

collaborators, which enhances trust both by providing information about each other’s 

reliability and by reinforcing a concern for reputation. Apart from selecting linkages 

based on past partners, managers could also choose to build up network resources by 

seeking out partnerships with central firms (Gulati, 1999), since connecting to well–

positioned companies with a high network status is more valuable for the knowledge 

and information transfer than just being connected to others in a network of whatever 

positioned (Hagedooen and Duysters, 2002). Another network strategy that a manager 

could adopt is to anticipate their network participations and strategically initiate 

selective network contacts. Inter–firm networks serve as strategic resources that 

managers can proactively design for future choices and develop over time to meet their 

objectives (Walter et al., 2007). Therefore, in order to better organize the cooperative 

relationships and thus attain a central position in a high–tech network environment, 

the managers can take a forward–looking view on the desired network structure of 

partners in the future and work backward on their current network strategy (Gulati, 

1999).  

    Choosing appropriate R&D partnerships is a crucial step for practicing managers in 

an innovative high technology industry, since it can affect the success of a firm’s 

innovation strategies and the effectiveness of a firm’s R&D capabilities. Obviously, 

R&D partnerships are important external sources of a firm, through which it can access 

knowledge and innovation generated outside its technological cluster. However, firms 

can only identify and acquire relevant external knowledge through internal R&D 

activities, especially internal learning capacities, since they determine the extent to 

which a firm can assimilate and exploit new knowledge from other firms. This is also 

called absorptive capacity, which was defined by Cohen and Levinthal (1990). 

Investing in such absorptive capacity allows a firm to effectively exploit external 

information for its own use. Nicholls–Nixon (1993) investigated the effects of absorptive 

capacity in pharmaceutical companies’ responses to the technological discontinuity 

brought by newly founded biotechnology firms, and found out that firms with high 

levels of absorptive capacity invested more in their own R&D and managed 
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communications more effectively with their cooperation partners. Thus, internal 

capabilities and external collaboration are complementary but not substitutes for one 

another, which means that firms need both capacities to develop their innovation 

strategy successfully (Powell and Brantley, 1992; Powell et al., 1996). From a 

managerial perspective, balancing an internal innovation strategy with an external 

R&D partnering strategy is an important strategic decision for firms’ innovativeness 

(Roijakkers, 2003; Vanhees, 2006). In a high degree of technological uncertainty that 

surrounds industrial development, firms that manage to have a high level of internal 

capability and external R&D partnering, would be capable to obtain competitive 

advantage and superior financial performance in the high–tech research network 

(Santos, 2003).  

    In particular, from a managerial perspective on the pharmaceutical biotechnology 

research networks, these large pharmaceutical companies should develop their research 

capability by using a variety of R&D partnerships with small biotechnology, but they 

should avoid time–consuming and costly partnering activities with companies that are 

not operating at the forefront of knowledge seeking and technology development 

(Hagendoorn et al., 2006). Small biotechnology firms should operate their business with 

rather different strategies due to their weak positions in the high–tech market in 

comparison to large pharmaceutical companies. It is highly possible that once the large 

pharmaceutical companies have absorbed critical knowledge from the smaller 

biotechnology firms, they would discontinue their partnerships with these small 

partners (Roijakkers et al., 2005). Thus, to survive in the fiercely competitive high–tech 

industry, biotechnology firms not only need to develop up–to–date technological 

knowledge and build up linkages to large pharmaceutical companies for funding their 

launching projects, but also need to develop long–term network strategy in terms of 

avoiding over–dependence on a few large pharmaceutical companies.  

 

 

 

5   Conclusions 

 

    Economics provides insights into the inter–firm R&D network in the sense that the 

combined value of the resources resulting from a firm’s cooperation exceeds the sum of 

resources coming from their separated economic activities. From the view of theoretical 
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network formation, a firm’s incentive to form parwise links results from its reciprocal 

interests and maximizing a firm’s incentive in partnerships may lead to a tension 

between individual incentive and social welfare. In most cases, R&D collaborations 

appear to generate positive effects on the societal welfare, so government policies 

generally encourage technological cooperation between high technology firms. In a 

high–tech environment with rapidly developing knowledge and innovation, research 

cooperations are an essential strategy for firms to become more successful. As a result, 

the R&D cooperation network in the pharmaceutical biotechnology industry has 

experienced a significant evolutional change in its size and structure during 1991–1998.  

    Not only network structure, but also a firm’s strategic position in the network 

influences the proceeds from the inter–firm R&D cooperation. Central firms obtain 

information much more easily and rapidly and hence occupy advantageous structural 

positions in a research network, while peripheral firms hardly gain any benefits from 

participating in the cooperation. There are three structural properties to the actor 

centrality as summarized by Wasserman and Faust (1994): degree, closeness, and 

betweenness. Degree centrality takes only direct neighbours of an actor into account 

and if the indirect contacts need to be considered, we look upon closeness centrality, 

which measures the distance from one actor to all other actors in the network. The 

closeness centrality of an actor increases when the total distance to all other actors 

decreases. The importance of an actor for the circulation of information is captured by 

the concept of betweenness centrality. An actor with higher score of betweenness is 

more likely to be a link in more information chains between other actors and thereby 

has an important role as an intermediary in the communication network. Based on 

these measures, a list of the most important firms in the time period 1991–1998 was 

compiled. More than half of these firms are pharmaceutical companies, indicating that 

pharmaceutical companies may play a more dominant role than biotechnology firms in 

the 1990s. From the descriptive analysis (Table 4 in Section 3) and graphical 

illustration (Figure 4 in Section 3), it becomes evident that pharmaceutical companies 

have indeed developed into dominant star players with multiple partnerships while 

holding central roles in the R&D network during the 1990s.  

    Apart from evaluating the network on the individual level, this paper also provides 

the conceptions of network–level centralization and examines the research cooperation 

on the level of the entire network. Three distinct structural properties (degree, 

closeness and betweenness) that have been defined as bases for developing measures of 
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actor–level centrality were also used to construct indices of network–level centralization. 

The results from the descriptive analysis show that both degree–based and 

betweenness–based network centralization are not high in the time period 1991–1998, 

which implies that the distribution of overall positional advantages in the 

pharmaceutical biotechnology industry is, to a large degree, not unequal and even 

though most firms in this sector are linked to the R&D network, some of them are 

more active than others. 

    In the empirical part (Section 4), we applied panel data to determine the factors 

that could influence firm’s centrality–based partnering capability in pharmaceutical 

biotechnology by using the network theory of “structural hole” and statistical methods 

of 2SLS and optimal GMM. Our results suggest that firm’s efficiency, firm’s 

dependency on its complementary resources and firm’s experiences at managing 

partnerships are important determinants for firm’s centrality–based partnering 

capability. Our findings also have implications for the practicing managers in the high 

technology industry. For instance, if managers want to keep the company in the inter–

firm partnerships with valuable contacts, it is necessary for them to improve their 

partner selecting skills. Practicing managers can meet their objectives by implementing 

different network strategies, such as selecting linkages based on past partners, seeking 

out partnerships with central firms, or proactively designing their future partner 

choices. Furthermore, in order to obtain competitive advantage and superior financial 

performance in the high–tech R&D network, balancing internal innovation strategies 

with external R&D partnering strategies is also crucial for practicing managers. 

Specifically, in the pharmaceutical biotechnology sector, the large pharmaceutical 

companies need to be selective in choosing partners and avoid time–wasting 

cooperations with partners who are technologically outdated, while small biotechnology 

firms need to keep pace with rapidly changing innovative developments and meanwhile 

avoid over–dependence on a few large pharmaceutical partners.  

    Our study not only has empirical and managerial implications for understanding the 

firm’s strategic partnering behaviour, it also has some theoretical implications. The 

results from the empirical analysis potentially points out the relation between the 

centrality measure and the conceptions in the network theory of “structural hole”, 

which implies that the network theory can be used as an instrument to improve our 

understanding of a firm’s strategic behaviour in establishing its partnerships. In this 

context, management literature on inter–firm networks can be inspired from the 
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conceptual ideas of network theory to improve the understanding of relevant issues, 

such as how managers could effectively create and design networks comprising various 

forms of partnerships (Hagedoorn et al., 2006). 

    In addition, there are a number of options for further studies. In the current paper, 

the determinative factors for firm’s centrality–based network capability are only 

empirically tested in the pharmaceutical biotechnology sector. Further research can 

reveal whether the same determinants we found are also important elements for firm’s 

centrality–based partnering capability in other high technology sectors. Considering a 

broader set of factors that may influence a firm’s ability to position itself centrally and 

a larger size of sample firms will also further deepen our understanding of the complex 

mechanisms in inter–firm R&D networks.  
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Appendix: Tables 

 
Table 1: Normalized degree–based network descriptive statistics in pharmaceutical 

biotechnology during 1991–1998  

 

Year 
 

Mean 

Degree 
 

S.D. 

Degree 
 

Min. 
 

Max. 
 

Network 

centralization 
 

1991 1.21 0.66 0.93 5.56 4.43% 

1992 0.94 0.56 0.62 3.09 2.17% 

1993 0.83 0.60 0.51 4.62 3.82% 

1994 0.75 0.62 0.40 3.97 3.24% 

1995 0.65 0.58 0.31 4.01 3.38% 

1996 0.64 0.63 0.27 4.56 3.94% 

1997 0.60 0.67 0.22 5.22 4.63% 

1998 0.54 0.54 0.22 3.44 2.91% 

          Source: Recombinant Capital. 

 

Table 2: Normalized closeness–based network descriptive statistics in pharmaceutical 

biotechnology during 1991–1998  

 

Year 
 

Mean 

Closeness 
 

S. D. 

Closeness 
 

Min. 
 

Max. 
 

1991 0.03 0.01 0.02 0.07 

1992 0.03 0.01 0.01 0.06 

1993 0.03 0.03 0.01 0.11 

1994 0.07 0.05 0.01 0.17 

1995 0.12 0.06 0.01 0.25 

1996 0.15 0.07 0.01 0.27 

1997 0.18 0.07 0 0.31 

1998 0.15 0.07 0 0.27 

                    Source: Recombinant Capital.  
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Table 3: Normalized betweenness–based network descriptive statistics in 

pharmaceutical biotechnology during 1991–1998  

 

Year 
 

Mean 

Betweenness 
 

S. D. 

Betweenness 
 

Min. 
 

Max. 
 

Network 

Centralization 
 

1991 0.02 0.06 0 0.43 0.42% 

1992 0.09 0.23 0 1.09 1.01% 

1993 0.24 0.70 0 4.51 4.30% 

1994 1.26 3.29 0 21.03 19.84% 

1995 1.15 2.61 0 25.44 24.37% 

1996 0.88 1.78 0 11.62 10.77% 

1997 0.67 1.49 0 11.07 10.42% 

1998 0.64 1.38 0 11.78 11.17% 

      Source: Recombinant Capital. 
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Table 4: The 40 most important players in pharmaceutical biotechnology in 1991–199813 

 

 
Company 

 

Sector 

 

Normalized 

Degree 

 

Normalized 

Closeness 

 

Normalized 

Betweenness 

 

1. Abgenix biotech 1.29 0.24 3.55 

2. Acacia Biosciences pharmaceutics  0.86 0.22 3.19 

3. Affymetrix biotech 3.44 0.25 7.81 

4. American Home Products pharmaceutics 1.72 0.23 2.90 

5. Amersham Pharmacia Biotech bio–pharmaceutics 1.72 0.24 3.52 

6. Bayer pharmaceutics 2.80 0.26 7.38 

7. Bristol–Myers Squibb pharmaceutics 3.01 0.23 5.41 

8. Centocor pharmaceutics 1.29 0.24 3.14 

9. Chiron biotech 1.72 0.23 3.02 

10. Corixa bio–pharmaceutics 1.51 0.22 1.37 

11. Du Pont pharmaceutics 1.08 0.21 2.97 

12. Elan biotech 2.15 0.23 3.73 

13. Eli Lily pharmaceutics 2.80 0.24 5.21 

14. Gene Logic biotech 1.29 0.23 2.59 

15. Genentech biotech 1.51 0.22 2.95 

16. Genetics Institute biotech 1.08 0.23 2.03 

17. Genome Therapeutics biotech 1.94 0.24 5.06 

18. Genzyme biotech 1.72 0.23 3.33 

19. Genzyme Transgenics biotech 1.08 0.21 2.24 

20. Hoechst Marion Roussel pharmaceutics 1.72 0.23 4.11 

21. Immunex biotech 1.08 0.22 2.02 

22. Incyte Pharmaceuticals pharmaceutics 2.58 0.27 8.84 

23. Lexicon Genetics pharmaceutics 0.86 0.22 1.20 

24. Medlmmune pharmaceutics 1.08 0.22 2.25 

25. Merck pharmaceutics 1.51 0.23 3.40 

26. Millennium Pharmaceuticals bio–pharmaceutics 1.51 0.22 3.06 

27. Novartis pharmaceutics 2.37 0.24 5.99 

28. Novo Nordisk pharmaceutics 2.15 0.24 3.66 

29. OncorMed biotech 1.29 0.24 4.03 

30. Oxford Asymmetry pharmaceutics 1.94 0.23 3.25 

31. Oxford GlycoSciences biotech 1.29 0.22 1.44 

32. Pasteur Merieux Connaught biotech 1.51 0.21 2.67 

33. Peptide Therapeutics biotech 1.08 0.22 2.31 

34. Pfizer pharmaceutics 3.44 0.25 6.59 

35.  Pharmacia & Upjohn pharmaceutics 1.94 0.23 4.94 

36. Roche bio–pharmaceutics 2.37 0.23 4.94 

37. Schering Plough pharmaceutics 3.44 0.28 11.78 

38. SmithKline Beecham pharmaceutics 3.44 0.25 8.76 

39. Tripos pharmaceutics 1.51 0.22 2.81 

40. Zeneca pharmaceutics 1.72 0.24 3.44 

Source: Recombinant Capital. 

                                                 
13 The names of companies are listed alphabetically.  
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Table 5: Descriptive statistics and correlations 
 

 Variable Mean S. D. 1 2 3 4 5 6 7 

1. Centrality–based partnering capability 0.8859 0.9287 –       
2. Efficiency level 0.8948 0.2710 0.2989 –      
3. Dependency  0.0824 0.2625 –0.2694 0.1130 –     
4. Partnering experiences  1.5546 1.1145 0.8449 0.4154 –0.3194 –    
5. Duration 3.9000 2.0778 0.4864 0.5203 –0.1641 0.5855 –   
6. Time effect (1996) 0.2500 0.4344 –0.0109 –0.0639 0.1578 –0.0695 –0.0767 –  
7. Time effect (1997) 0.2500 0.4344 –0.1434 0.1223 –0.1020 0.0733 0.0906 –0.3333 – 
8. Time effect (1998) 0.2500 0.4344 0.2419 0.1525 –0.1553 0.1504 0.2439 –0.3333 –0.3333 

 
 



 49 

Table 6: Panel instrumental variable estimates 

 2SLS 2SLS with Robust Standard 

Errors 
Optimal GMM 

Variable 1 2 3 4 5 6 7 

Efficiency level 2.3103* 
(1.2421) 

2.2569* 
(1.2140) 

2.3103* 
(1.2140) 

2.2569* 
(1.2306) 

1.9365* 
(1.0886) 

1.7569 
(1.1431) 

2.2706* 
(1.2725) 

Dependency  -0.7216* 
(0.4340) 

-0.6955* 
(0.4062) 

-0.7216* 
(0.3923) 

-0.6955* 
(0.3604) 

-0.6523* 
(0.3742) 

-0.5733* 
(0.3473) 

-0.7171** 
(0.3612) 

Partnering experiences  0.5650*** 
(0.1017) 

0.5690*** 
(0.0990) 

0.5650*** 
(0.0953) 

0.5690*** 
(0.0937) 

0.5908*** 
(0.0906) 

0.6068*** 
(0.0900) 

0.5707*** 
(0.0921) 

Duration -0.1171* 
(0.0693) 

-0.1179 
(0.0720) 

-0.1171* 
(0.0598) 

-0.1179* 
(0.0648) 

-0.1106* 
(0.0567) 

-0.1043* 
(0.0618) 

-0.1302** 
(0.0647) 

Time effect(1996) -0.0328 
(0.1598) 

 -0.0328 
(0.1951) 

 -0.0443 
(0.1912) 

  

Time effect(1997) -0.6165*** 
(0.1997) 

-0.5776*** 
(0.1462) 

-0.6165*** 
(0.2101) 

-0.5776*** 
(0.1335) 

-0.6684*** 
(0.1923) 

-0.6077*** 
(0.1239) 

-0.6213*** 
(0.1311) 

Time effect(1998) -0.0681 
(0.1934) 

 -0.0681 
(0.1893) 

 -0.0778 
(0.1834) 

  

Constant -1.3639** 
(0.6794) 

-1.3564** 
(0.6838) 

-1.3639* 
(0.7087) 

-1.3564* 
(0.7445) 

-1.0650* 
(0.6103) 

-1.0156 
(0.6674) 

-1.3077* 
(0.7756) 

Instrument:        
Clustering coefficient √ √ √ √ √ √  

Biotechnology √ √ √ √ √ √ √ 

US √ √ √ √ √ √ √ 

Germany √ √ √ √ √ √ √ 

Denmark √ √ √ √ √ √  
Firm age √ √ √ √ √ √ √ 

        
p-val in overidentification test 0.5442 0.5241 0.1858 0.1774 0.1858 0.1774 0.2569 

p-val in endogeneity test 0.0015 0.0020 0.0020 0.0029 0.0020 0.0029 0.0021 
        

Number of observations 160 160 160 160 160 160 160 
Centered R-squared 0.4266 0.4402 0.4266 0.4402 0.5166 0.5566 0.4355 

Uncentered R-squared 0.7007 0.7078 0.7007 0.7078 0.7477 0.7685 0.7053 

  Notes: Standard errors in parentheses; significance–levels * p<0.1; ** p<0.05; *** p<0.01. 
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